Hello (again!) Bart,
I'm getting there - I've now found your thread http://www.luminous-landscape.com/forum/index.php?topic=68089.0 (that's the one,I take it?), and I've taken the test figures you supplied on the first page, fed them into your Slanted Edge tool and got the same radius (I haven't checked this out, but I assume you take an average of the RGB radii?).
Hi Robert,
What the analysis of the R/G/B channels shows is that, despite the lower sampling density of Red an Blue, there is not that much difference in resolution/blur. The reason is that most demosaicing schemes use the denser sampled Green channel info as a kind of clue for the Luminance component of the R/B channels as well. Since Luminance resolution is then relatively equal, one could just take the blur value for Green, or the lower of the three, to avoid over-sharpening the other channels. But with such small differences it's not all that critical.
I then put this radius in your PSF generator and got a deconvolution kernel and tried it on an image from a 1Ds3 with a 100mm f2.8 macro (so pretty close to your eqpt). The deconvolution in Photoshop is pretty horrendous (due to the integer rounding, presumably); however if the filter is faded to around 5% the results are really good. Using floating point and ImageJ, the results are nothing short of impressive, with detail recovery way beyond Lr, especially in shadows.
Cool, isn't it? And that is merely Capture sharpening in a somewhat crude single deconvolution pass. The same radius can be used for more elaborate iterative deconvolution algorithms, which will sharpen the noise less than the signal, thus producing an even higher S/N ratio, and restore even a bit more resolution.
I don't know how best to set the scale on your PSF generator - clearly a high value gives a much stronger result; I found that a scale of between 3 and 5 is excellent, but up to 10 is OK depending on the image. Beyond that noise gets boosted too much, I think.
In my tool, the 'Scale' is normally left at 1.0, unless one wants to increase the 'Amount' of sharpening. When upsampling is part of the later operations, I'd leave it at 1.0, to avoid the risk of small halos at very high contrast edges. The 'scale' is mostly used for floating point number kernels.
I didn't see much difference between a 5x5 and a 7x7 kernel, but it probably needs a bit more pixel-peeping.
When radii get larger, there may be abrupt cut-offs at the kernel edges, where a slightly larger kernel support would allow for a smoother roll-off. This becomes more important with iterative methods, hence the recommendation to just use a total kernel diameter of 10x the Blur Radius, which will reduce the edge contributions to become marginal and thus have a smooth transition towards zero contribution outside the range of the kernel.
I also don't understand the fill factor (I just set it to Point Sample).
A point sample takes a single point on the Bell shaped Gaussian blur pattern at the center of the pixel and uses that for the kernel cell. However, our sensels are not point samplers, but area samplers. They will integrate all light falling within their area aperture to an average. This reduces the peakedness of the Gaussian shape a bit, as if averaging all possible point samples inside that sensel aperture with a square kernel. The size of that square sensel kernel is either 100% (assuming a sensel aperture that receives light from edge to edge, like with gap-less micro-lenses), or a smaller percentage (e.g. to simulate a complex CMOS sensor without micro-lenses with lots of transistors per sensel, leaving only a smaller part of the real estate to receive light). When you use a smaller percentage, the kernel's blur pattern will become narrower and more peaked and less sharpening will result, because the sensor already sharpens (and aliases) more by it's small sampling aperture.
What seems to be a good approach is to do a deconvolve with a scale of 2 or 3 and one with a scale of 5 and to do a Blend If in Photoshop - you can get a lot of detail and soften out any noise (although this is only visible at 200% and completely invisible at print size on an ISO200 image).
Again, it depends on the total workflow. I'd leave it closer to 1.0 if upsampling will happen later, but otherwise it's up to the user to play with the 'Amount' of sharpening by changing the 'Scale' factor. This all assumes Floating point number kernels, which can also be converted into images with ImageJ, for those applications that take images of PSFs as input (as is usual in Astrophotography).
It occurred to me that as your data for the same model camera and lens gives me very good results that it would be possible to build up a database that could be populated by users, so that over time you could select your camera, lens, focal length and aperture and get a close match to the radius (and even the deconvolution kernel). The two pictures I checked were at f2.8 (a flower) and F7.1 (a landscape), whereas your sample data was at f5.6 - but the deconvolution still worked very well with both.
That's correct, as you will find out, the amount of blur is even not all that different between lenses of similar quality, but it does change significantly for the more extreme aperture values. That's completely unlike the Capture sharpening gospel of some 'gurus' who say that it's the image feature detail that determine the Capture sharpening settings, and thus they introduce halos by using too large radii early in their processing. It was also discussed
here.
It's a revelation for many, to realize they have been taught wrong, and the way the Detail dialog is designed in e.g. LR doesn't help either (it even suggests to start with changing the Amount setting before setting the correct radius, and it offers no real guidance as to the correct radius, which could be set to a more useful default based on the aperture in the EXIF). We himanss are pretty poor at eye-balling the correct settings because we prefer high contrast, which is not the same as real resolution. It's even made worse by forcing to user to use the Capture sharpening settings of the Detail panel for Creative sharpening later in the parametric workflow, which seduces users to use a too large radius value there, to do a better Creative sharpening job.
Cheers,
Bart