Hmm. Without cranking up the lightness to evaluate the dark tones?
When initially comparing the results of IT8 profiling, and in all subsequent comparisons, I simply opened my reference files (scanned at the various gammas), applied the relevant profile, and had a look at the image, whether it be light, dark, or in between. No cranking up the lightness, no bringing down the highlights, I evaluated all images unedited.
Ref 18 Gamma 1.0 (for example) immediately struck me as having something wrong with it. When a similar effect was observed in some of the other
Gamma 1.0 references, I decided that
Gamma 1.0 was not optimum. Editing may have been able to bring it up to look similar to the others, but I haven't tested that yet because at this stage I want to compare the effect of IT8 profiling alone to determine the best starting point. Comparing editing at various gammas is a test yet to come, after I work out how to optimally scan using my setup. But what I have done, is to play around with the gamma I consider to be the best starting point, to see what improvements can be had. When I work out how to edit in the most effective, efficient manner, then I'll test that editing method with all gammas, subsuming the IT8 profiling and editing into one overall valid comparison. If
Gamma 1.0 comes out on top, I'll be a
Gamma 1.0 man. I'm not in love with a certain gamma – I want the best end result.
Problems with an Analytical ApproachOne of the problems with the purely analytical approach of evaluating profiles by their calculated errors, is the possibility of internal errors being locked into the loop and not revealing themselves. Generating a profile is a closed loop: you assume you have an accurate IT8 target which is then scanned, you generate a profile, and the profiler compares the resulting colours with the IT8 colours and generates a profile. A closed loop works well if everything is reasonably accurate. Errors between target and scan (after profiling) will be reported as being low. If however, one of the patches has been incorrectly measured by Kodak, say, or has "surround" problems, then a low error may still be reported because there is nothing to tell the profiler that something is wrong. The profiler may be generating a very accurate profile for the target – it corrects for the inaccuracy, not aware of the inaccuracy – but the profile may be inaccurate for real-life slides. I'm reminded of a comment by the author of an Olympus book on SLR cameras from the 1980s in which he explains the use of 18% gray cards, and finishes with: "I can guarantee that if you go around photographing gray cards, you'll have perfect exposure every time". In the case of IT8 targets, the sentiment could be paraphrased: "If you profile IT8 targets, and generate error reports, you'll always get near perfect results." It's closed loop. Unless there is something wrong with the profiler, you must get good results.
Low Errors, Poor ProfileLet's say that Kodak reckons GS23 has an L* value of 0.5, when in fact the actual patch is 3.0. Let's assume GS23 scans at 3.0 (good scanner), and that the profiler does a good job at profiling. When the errors are calculated, they will therefore be reported as being low. But come to the scan of a real-life slide, which may also contain actual L* = 3.0 values, every time the profile sees L* = 3.0 in the real image it says: "That should really be 0.5". So it alters the colour by darkening, causing a visible problem in real-image shadows, but no obvious problem in the target (the 3.0 patch will be corrected to 0.5 to make the target look like it should).
The above problem happens in practice with my Kodachrome IT8 target (at least that's my explanation. Here is what I think is going on:
1. Kodak manufactures a master IT8 slide using a certain process that will be repeated in the manufacture of subsequent slides.
2. Each patch is measured with a light instrument, and an IT8 data file is created. Now, how is the L* measurement made? I don't know, so I'll take a guess. Does Kodak have a physical mask which sits over the slide and only allows D50 light to come through one entire patch at a time? Maybe, but I think unlikely (remember, I'm just guessing). I reckon they would throw a small circle of light through each patch, measure the colour of the circle of light, and make sure the circle doesn't approach too closely to the sides of the patch. Thus, Kodak measures the colour of only a small portion in the centre of each patch, ignoring the "surround" problem.
3. But, in reality, the surround problem comes back when the slide is scanned and subsequently profiled. For two reasons: (a) the scanner throws flare onto a dark area if it abuts a bright area; (b) the Kodachrome target appears to have been manufactured with a surround problem inbuilt. By looking closely at the top and bottom of GS15-23, through a 15x microscope eyepiece on a bright slide viewer, I think I can see a lighter stripe, top and bottom. If Kodak measured colour with a circle of light centred on the patch, they avoided this lighter area. If a profiler averages the entire patch, it does
not avoid this area, and it's average will be different from Kodak's.
4. GS23, the blackest, is most affected: a bright white on the left, and three light grays on the other sides. With my scanner, GS23 scans higher than it should by 3 or 4 L* units – and worse, it scans lighter than GS22 (which has the same bright white on the right, and two light grays, top and bottom). Being lighter, GS22 is less affected. GS21 has light grays top and bottom only, and because it is lighter than GS22, is less affected again. GS21-15 are similarly affected top and bottom, but because they are progressively lighter, the "surround" problem is not as prominent.
5. This surround problem is most prominent for GS15-23. It should not cause problems in other areas, but it is probably best that only the central area of each patch be averaged by a profiler.
Explanation in FiguresWe might have a situation where Kodak provides an L* number measured in a small central area, but the scanner/profiler combination profiles a different area, which, because of flare and the surround effect (inbuilt and from the scanner), causes the two values to be reconsilable for the target itself, but not reconsilable when applied to other images.
I'd better explain with figures (made up, just for explanation), which refer to three patches, the darkest two of which show an unexpected (but real) reversal in density, as do GS22 and GS23, caused by flare and surround problems. The first figure is an assumed scanned value of L*, the second is the target value. The figure in brackets is what an ideal profiler would do to the scanned value.
10.1 -> 9.3 (sent darker by 0.8 )
3.6 -> 1.1 (sent darker by 2.5)
3.7 -> 0.5 (sent darker by 3.2)
The IT8 profile, when applied to the scanned target, works perfectly. The image on screen looks just like the slide. The profiler has accommodated the flare, the scanner errors, the surround problem. Congratulations all around.
But something comes along to spoil the fun: a real-life slide. It also has L* areas of 10.1, 3.7 and 3.6, but they have not been compromised by flare or surround problems, just slight scanning errors. i.e. they scan at close to these values. Let's assume they scan at exactly these values for the sake of explanation. They are a part of a forest scene in shadow, and 10.1 is brighter than 3.7, which is ever so slightly brighter than 3.6. What does the profile do to them? Well, it transforms them by its inbuilt routines, the same as in the example above:
10.1 -> 9.3
3.7 -> 0.5
3.6 -> 1.1
The shadows of the real scene now have problems. The 10.1 shadow is close to what it should be, but the other two shadow details have been reversed in their brightness and made blacker. The profile, by correcting the IT8 target for flare, surround, and scanner errors, will apply those corrections to all other slides even when the first two problems don't exist.
SummaryColour correction by profiling, in the presence of flare and surround problems, introduces errors into the shadows, errors that are not present in an uncorrected scan. The errors can be minimized by averaging only the central area of each patch (or by replacing the whole patch with a colour value taken from the centre area), and by faking GS23 to be more in line with what it should be (0.51).
Why is the problem not so apparent at higher scan gammas? Something for me to think about.